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A general method for deriving a finite-difference equation from a partial differential 
equation with the use of local model solutions is presented. The method, which is based 
on the evaluation of local functions, is illustrated by applying to a time-dependent 
vorticity equation. The main advantage of the present approach is that there is no 
apparent stability limitation on grid size and time step. Time dependent NavierStokes 
equations are solved with the present formulation for a Couette flow with constant 
suction and a square cavity flow problems. Steady-state, convergent solutions are ob- 
tained with grid sizes and time steps much larger than those determined from the 
conventional stability criteria for the forward time central difference method. The local 
model solutions used in the present paper were designed to produce steady-state solu- 
tion; care must be taken to interpret the transient solution obtained from the present 
model with large time step. 

1. INTRODUCTION 

It is well known that certain criteria determining numerical stability must be 
taken into account when performing finite-difference calculation of a general class 
of flow problems [ 1, 21. These limitations on grid sizes and time steps are directly 
related to the discretization errors associated with the derived finite-difference 
equation. The problem of the discretization error and the numerical stability can 
be minimized or eliminated if one can make use of local analytical model solutions 
of the governing partial-differential equation in the formulation of a finite- 
difference equation. For example, a partial-differential equation can be written as 
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where L is a differential operator. Equation (1) written in a conventional finite- 
difference form is 

where L, is a finite-difference operator and E represents the difference 

E = L{#l - LA+). (3) 

In the present approach, the finite-difference equation for Eq. (1) is written as 

-&{A G*) = 0, (4) 

where the additional function G* is introduced to eliminate the error E. The 
remaining problem is then to determine the function G*. Since local analytical 
solutions for multi-dimensional problems may be lengthy and tedious to evaluate, 
a one-dimensional model is used in the present analysis to obtain approximate 
function G instead of the exact function G”. The name of the “decay function” 
is used for G or G* in the present analysis. Equation (4) now can be written as 

L,{+, G) = A. 

The above equation is a general form of the present formulation. 

(5) 

2. ONE-DIMENSIONAL EXAMPLE 

The procedure is best illustrated for the following time-dependent vorticity 
equation. 

al2 a%2 ai -zz=- 
at ay - z'z, (6) 

where Q is the vorticity, v is the kinematic viscosity, and u is the velocity. In the 
present approach, modified finite difference expressions are given as 

(7) 
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where the subscript represents the gridpoint and the superscript represents the time 
step. With Eq. (7), the resulting finite difference equation becomes 

The function Fj is not explicitly used in Eq. (8) because two functions are actually 
needed for the Eq. (6), which has only three terms in it. Equation (8) can be 
arranged to provide an explicit formula for the calculation of Q;+l in terms of 
QT+, , Qy-, , Qj”, grid size (6~) time step (at), and the decay functions G, and Gj . 
Note that with Gt = 1 and Gj = 1, Eq. (8) reduces to the conventional forward 
time central difference formula (FTCD). Two well-known numerical stability 
limitations exist that limit the time step Sr and the grid size 6y, i.e., 

In principle, one can always use smaller grid sizes and time steps and carry out the 
numerical computation for a longer time, but often, one is limited by the computing 
time and storage available. Besides, one is often more interested in the steady-state 
solution rather than the transient solution, even though the time dependent 
approach is used. 

The purpose of the present analysis then, is to provide a method that enables one 
to obtain a stable and accurate solution with larger grid sizes and time steps. 
With this in mind, we now proceed forward to determine the decay function G, 
and Gj . 

To determine Gj , decouple the right-hand side of Eq. (8) from the left-hand side. 
This is done simply by making a “quasi-steady state” assumption, i.e., locally, in 
time a/at M 0. This is not a trivial assumption because a local analytical steady- 
state solution can exist. The decay function Gj can be obtained by comparing the 
local finite-difference solution with the local analytical steady-state model solution. 
In the derivation, u and Qj*l values are assumed constant. The result is 

2(&Q - 1) 
Gi = ; (1 - em. _ 1 ). 3 , 

The use of the local steady-state model solution also can be found in the classical 
paper by Allen and Southwell [3] and Spalding [4]. The function Gj is shown 
in Fig. 1. Often, an approximate form of the decay function Gj is desirable to save 
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FIG. 1. Spatial decay function Gj 

the computing time in evaluating the exponential functions in Eq. (10). One such 
approximate form is given here 

Gj = 1.0 - 0.0625 . (R#, 1 Rj ( < 2.0, 

2 =--- I & I (ij)' ' / Rj 1 > 2.0. 
(11) 

The determination of the time decay function G, requires a local time-depen- 
dent analytical solution to a model equation. The model equation is derived 
from Eq. (6) based on an explicit scheme, i.e., !S;+’ at the (n + 1)th time step 
can be explicitly determined from SZjn, sZy+:, , and L?;, at the nth time step. By 
substituting the finite difference expressions for the spatial derivatives in Eq. (6), 
one can formulate an explicit time-dependent model equation for sZj as 

where 

(aG'j/at)+ 2C *Sj = 2C *En, WJ 

C = V St/(S]j2 ’ Gj), 

E" = {.n,r, + (J-i';,, - iI,"-1) . (1 - Rj * Gj/2)/2). 

The time integration of Eq. (12) from the nth time step to the (n + 1)th time step 
gives 

fi;+l = Gj” . e-‘= + (1 - ,-=) . En, with L& = const. (13) 

By comparing the finite-difference Eq. (8) and the local time-dependent solution 
(13), the decay function G, can be determined. 

G, = (1 - e-2C)/2C. (14) 



272 JOHN C. CHIEN 
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FIG. 2. Time decay funtion G, 

The time decay function Gt is shown in Fig. 2. To reduce computing time, an 
approximate form of G, is given as 

Gt = 2(C + l + 1 
1) 2(C + I)2 * 

With the decay function Gj and Gt determinated by the present method, the 
next important point is to determine if the formulation provides a stable solution 
for larger time steps and grid sizes than those determined from Eq. (9) for the 
conventional formulation. It is not difficult to see that the present finite difference 
Eq. (8), with the decay functions given by Eqs. (10) and (14), converges to the 
original partial differential Eq. (6) as the grid size (8~) and time step (at) goes to 
zero in the limit. The stability limitation of the Eq. (8) can be easily derived by 
redefining v as vGt/Gj and u as UC, in Eq. (9), i.e., 

1 _ 4 . Gj > 0 -1, 2 
&2s*Gt>o 

7’ * 

The condition (16) also provides upper bounds for the spatial decay function Gj 
and the time-wise decay function Gt , namely, Gi < 2/Rj and G, < 1/2C (see 
Figs. 1 and 2). 

For the conventional FTCD method, the decay functions Gj and G, are set 
equal to unity. The stability limitation (9) is readily recovered from Eq. (16). 
The grid size and the time step for the FTCD method is thus limited by the Eq. (9). 
On the other hand, the condition given by Eq. (16) is automatically satisfied with 
decay functions given by Eqs. (10) and (14) for all values of Ri and S. There is 
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no apparent stability limitation on the grid size and the time step for the present 
formulation. This is the basic advantage of the present method over the conven- 
tional FTCD method. Therefore, large time steps and grid sizes can be used in 
the computation without suffering the numerical stability problem. This important 
characteristic of the present method will be further verified by applying it to various 
flow problems in the next section. 

3. APPLICATION TO NAVIER-STOKES EQUATIONS 

To provide further evidence, Navier-Stokes equations are solved with the present 
formulation for two time-dependent, two-dimensional problems: (1) a Couette 
flow with constant suction through porous walls, (2) a square cavity flow with a 
moving wall. 

3.1. Time-Dependent Couette Flow with Constant Suction 

The flow field between two initially stationary parallel porous plates is estab- 
lished by injecting the fluid through the lower porous plate and moving the flow 
out of the upper plate at an equal rate. The upper porous plate is then suddenly 
set to motion at a constant speed. The subsequent flow field can be described by 
the following time-dependent Navier-Stokes equations written in terms of the 
vorticity (Sz) and the velocity components (u, a). 

a2n aY2 
~I-u~+v~=v(~+yz), (17) , 

~+z+!E, (18) 

! a2” = LQ PO 
ax2 o ayy” ax * (19) 

The finite difference formulation of Eqs. (17)-(19) is given as 

581/20/3-z 
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where 

(23) 

’ = ( sxP1. Gi + ,SjyP1. Gj ) * ’ St. 

Ri and Rj are local grid Reynolds numbers in x and y directions. 
The initial and boundary conditions are: 

t=o, Q=U=O, r=O.l, for the whole flow field, 

t = o-t, u = 1.0, s = -2.o/+, at the upper plate, 

t > 0, L: = 1.0, Qn+l = -2(1 .O - U,“)/Sy - IR,“, at the upper plate, 
(24) 

u = 0, Q = -0.000454, at the lower plate, 

where UP and Sz, are the velocity and the vorticity at one point away from the 
upper wall. The exact analytical value of the vorticity at the lower plate was used 
to minimize the unnecessary error due to the finite-difference treatment of boundary 
conditions. The boundary condition at the planes normal to the porous plate is 
given as 

acjpx = 0, cp = Q, u, v. (25) 

Numerical computation was carried out for a computational size of 3 x 11 points 
with grid size (Sx, Sy) set equal to a value of 0.1. A constant kinematic viscosity 
(V = 0.01) was also used. Equation (20) is then used to provide the vorticity field 
at the (n + 1)th time step and velocity Eqs. (21) and (22) are solved iteratively (20 
iterations per time step for all cases). Identical steady-state solutions were obtained 
for six different time steps, namely, St = 0.1, 0.2, 0.5, 1 .O, 2.0, and 5.0. 

The steady-state velocity and vorticity distributions are given in Figs. 3a and b. 
The agreement between the present result and the exact analytical solution is 
excellent. The time history of the wall vorticity for 6, = 1.0 is shown in Fig. 4. 
The explicit solution (G, = 1.0) diverges and is included for comparison. The 
computing time (total CPU time) required to reduce the residual ratio at the wall 
to a value below 1 x 1O-6 varied from 1.6 to 2.5 set on IBM 370/165 machine. 

3.2. Time-Dependent Square Cavity Flow with a Moving Wall 

Square cavity flow problem has been investigated by several authors. Due to its 
simple geometry, the square cavity problem has been used to test various numerical 
schemes for the calculation of recirculating flows [5-91. Since the steady-state 
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FIG. 3a. Steady-state velocity profile of 
the couette flow with constant suction, 

FIG. 3b. Steady-state vorticity profile 
of the couette flow with constant suction. 

FIG. 4. Time history of the wall vocticity for couette flow problem 

solutions are available in those previous investigations, it is selected as a test 
case for the present method. Initially, the flow in a square cavity is stationary. 
The upper wall is then set to motion at a constant speed U, . The governing 
equations and the finite difference equations are the same as those given in 
Section 3.1. The initial and boundary conditions are: 

t=O,SZ=U=v=O, for the whole flow field, 

t = Of, u = 1.0, Q = -2.0/6y, v = 0, at the upper moving wall, 

t > 0, u = 1.0, LP+1 = -2(1.0 - U,“)/Sy - Q,“, at the moving wall, 

u = v = 0, Qn+1 = -2U,“/Sy - i&n, at the bottom wall, 

u = v = 0, fP+1 = f2V,“/6y - Q,“, at the two side walls, 
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where U,, VD, 52, are quantities evaluated at one point away from the corre- 
sponding wall. Two computational grid sizes are used in the calculation: one has 
51 x 51 gridpoints (6x = SJJ = 0.02) the other has 11 x 11 grid points 
(6x = 6~ = 0.1). The time step is 6t = 1.0 and the kinematic viscosity is 0.01 
for both cases. Note that the time step used in the present calculation is much larger 
than those determined from Eq. (9) for conventional FTCD scheme, namely, 
St = 0.02 for the 51 x 51 point case, and St = 0.5 for the 11 x 11 point case. 
Steady-state convergent solutions are presented in Fig. 5 for the velocity distri- 
butions on the vertical center plane of the square cavity. The agreement with 
Burggraf’s [5] 51 x 51 point solution is excellent. The present 11 x 11 point 
solution is also compatible with Mills [6] 15 x 15 point solution. To make sure 
that the present 11 x 11 point solution is consistent with the coarse grid size 
used, the same problem is solved in terms of a vorticity-stream function formulation 
(Q - $). The velocity Eqs. (18) and (19) are replaced by a single stream function 
equation. 

The stream function Eq. (26) is solved in a conventional central difference method 
with a zero stream function specified at the boundary walls. The steady-state 
solution of this vorticity-stream function formulation for a 11 x 11 point cavity 
is shown in Fig. 5. The agreement between the Q-U-V solution and the Q-$ 
is good. It is concluded that the 11 x 11 point solution is consistent with the coarse 
grid size used. The computing time needed to reach a steady-state solution 
(residual < 1 x 10-5) for the 51 x 51 point case is about 7 min 30 sec. For the 
11 x 11 point case, it took only 2.5 set for the residual to reach a value below 

FIG. 5. Steady-state velocity profiles on the vertical center plane of a square cavity 
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1 x lo-‘j. Note that 20 inner interations per time step are used throughout the 
test for the velocity cycle and the stream function cycle in all test cases to obtain 
convergent solutions within each time step. Although the number of inner iterations 
may be time and problem dependent, it was held constant so that the computing 
time to reach a steady-state solution can be easily compared. 

3.3. Inaiscid Equation as Limiting Case of IrEfinite Reynolds Number 

As Reynolds number goes to infinity, the viscous equation (6) can be formally 
reduced to an inviscid equation outside the boundary layer region, i.e., 

The large Reynolds number limit of the spatial decay function Gi can be easily 
derived from Eq. (11) as 

Gja 2 
(R,l’ 

1 Rj 1 + infinity. (28) 

With this limiting form of the decay function, the finite-difference equation (8) 
takes the following forms. 

= +v * 
szj”,, - J2jn 

sy ’ 
2’ < 0. 

By simply looking at Eqs. (27) and (29) it is not difficult to see that the convection 
term is now represented by a two-point one-side upwind difference formula. 

3.4. Modijed Decay Function Formula 

To simplify the computational effort, a proposed decay function formula is 
given as follows 

G = 1.0 - 0.0625 . (R)2, I R I < 2.0, 

2 =--- 
IAl (Ii)2 ’ I R I > 2.0, 

for spatial decay function (G,): 

(30) 

G = Gj, R= Rj, (31) 
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for time-wise decay function (GJ: 

G = Gt, R = 4C. (32) 

The lack of a physical (or mathematical) model for the time decay function does 
not cause any instability problem because the Eqs. (30)-(32) satisfy the stability 
criterion (16). 

4. CONCLUDING REMARKS 

Several important conclusions can be made for the present general finite- 
difference formulation. 

(1) The present formulation has been successfully demonstrated to obtain 
steady-state convergent solution for a square cavity flow and a Couette flow with 
suction. There is no apparent stability limitation on the grid size and the time step 
with the present method. 

(2) The ability to account for the numerical stability comes from the fact 
that local analytical model solutions and locally evaluated decay functions are 
used in the formulations. 

(3) Although the present local model was not designed to produce accurate 
transient solution with large time steps, local models that covered several gridpoints 
and time steps with a larger region of influence could be developed to provide 
more accurate transient results. 

REFERENCES 

1. C. w. kbRT, J. Comput. P&s. 2 (1968), 339. 
2. PATRICK J. ROACH& “Computational Fluid Dynamics,” Hermosa, 1972. 
3. D. N. DE G. ALLEN AND R. V. Sowrmv~u, Q. J. Mech. and Applied Math. 8 (1955), 129. 
4. D. B. SPALDING, Znt. J. Num. Meth. Ergng. 4 (1972), 551. 
5. 0. BURGGRAF, J. Fkid Mech. 24 (1966), 113. 
6. R. D. MILLS, J. Roy Aero. Sot. 69 (1965), 714. 
7. A. K. RIJNCHAL, D. B. SPALDING, AND M. WOLFSHTEIN, Phys. Ffuidr, Supplement II, 11-21, 

(1969). 
8. D. GREENSPAN, Comput. J. 12 (1969), 89. 
9. J. D. BOZEMAN AND C. DALTON, J. Comput. Phys. 12 (1973), 348. 


